skip to main content


Search for: All records

Creators/Authors contains: "Grunblatt, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In this work, we present the discovery and confirmation of two hot Jupiters orbiting red giant stars, TOI-4377 b and TOI-4551 b, observed by Transiting Exoplanet Survey Satellite in the Southern ecliptic hemisphere and later followed-up with radial-velocity (RV) observations. For TOI-4377 b, we report a mass of $0.957^{+0.089}_{-0.087} \ M_\mathrm{J}$ and a inflated radius of 1.348 ± 0.081 RJ orbiting an evolved intermediate-mass star (1.36 M⊙ and 3.52 R⊙; TIC 394918211) on a period of of 4.378 d. For TOI-4551 b, we report a mass of 1.49 ± 0.13 MJ and a radius that is not obviously inflated of $1.058^{+0.110}_{-0.062} \ R_\mathrm{J}$, also orbiting an evolved intermediate-mass star (1.31 M⊙ and 3.55 R⊙; TIC 204650483) on a period of 9.956 d. We place both planets in context of known systems with hot Jupiters orbiting evolved hosts, and note that both planets follow the observed trend of the known stellar incident flux-planetary radius relation observed for these short-period giants. Additionally, we produce planetary interior models to estimate the heating efficiency with which stellar incident flux is deposited in the planet’s interior, estimating values of $1.91 \pm 0.48~{{\ \rm per\ cent}}$ and $2.19 \pm 0.45~{{\ \rm per\ cent}}$ for TOI-4377 b and TOI-4551 b, respectively. These values are in line with the known population of hot Jupiters, including hot Jupiters orbiting main-sequence hosts, which suggests that the radii of our planets have re-inflated in step with their parent star’s brightening as they evolved into the post-main sequence. Finally, we evaluate the potential to observe orbital decay in both systems.

     
    more » « less
  2. Abstract

    While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject tosinidegeneracies, this degeneracy can be lifted through the observations of eclipses. We combine the subset of Gaia Data Release 3 SB1 solutions consistent with brown dwarf-mass secondaries with the Transiting Exoplanet Survey Satellite (TESS) Object of Interest (TOI) list to identify three candidate transiting brown dwarf systems. Ground-based precision radial velocity follow-up observations confirm that TOI-2533.01 is a transiting brown dwarf withM=723+3MJup=0.0690.003+0.003Morbiting TYC 2010-124-1 and that TOI-5427.01 is a transiting very low-mass star withM=932+2MJup=0.0880.002+0.002Morbiting UCAC4 515-012898. We validate TOI-1712.01 as a very low-mass star withM=827+7MJup=0.0790.007+0.007Mtransiting the primary in the hierarchical triple system BD+45 1593. Even after accounting for third light, TOI-1712.01 has a radius nearly a factor of 2 larger than predicted for isolated stars with similar properties. We propose that the intense instellation experienced by TOI-1712.01 diminishes the temperature gradient near its surface, suppresses convection, and leads to its inflated radius. Our analyses verify Gaia DR3 SB1 solutions in the low Doppler semiamplitude limit, thereby providing the foundation for future joint analyses of Gaia radial velocities and Kepler, K2, TESS, and PLAnetary Transits and Oscillations light curves for the characterization of transiting massive brown dwarfs and very low-mass stars.

     
    more » « less
  3. Abstract We combine multiple campaigns of K2 photometry with precision radial velocity measurements from Keck-HIRES to measure the masses of three sub-Neptune-sized planets. We confirm the planetary nature of the massive sub-Neptune K2-182 b ( P b = 4.7 days, R b = 2.69 R ⊕ ) and derive refined parameters for K2-199 b and c ( P b = 3.2 days, R b = 1.73 R ⊕ and P c = 7.4 days, R c = 2.85 R ⊕ ). These planets provide valuable data points in the mass–radius plane, especially as TESS continues to reveal an increasingly diverse sample of sub-Neptunes. The moderately bright ( V = 12.0 mag) early K dwarf K2-182 (EPIC 211359660) was observed during K2 campaigns 5 and 18. We find that K2-182 b is potentially one of the densest sub-Neptunes known to date (20 ± 5 M ⊕ and 5.6 ± 1.4 g cm −3 ). The K5V dwarf K2-199 (EPIC 212779596; V = 12.3 mag), observed in K2 campaigns 6 and 17, hosts two recently confirmed planets. We refine the orbital and planetary parameters for K2-199 b and c by modeling both campaigns of K2 photometry and adding 12 Keck-HIRES measurements to the existing radial velocity data set ( N = 33). We find that K2-199 b is likely rocky, at 6.9 ± 1.8 M ⊕ and 7.2 − 2.0 + 2.1 g cm −3 , and that K2-199 c has an intermediate density at 12.4 ± 2.3 M ⊕ and 2.9 − 0.6 + 0.7 g cm −3 . We contextualize these planets on the mass–radius plane, discuss a small but intriguing population of “superdense” sub-Neptunes ( R p < 3 R ⊕ , M p >20 M ⊕ ), and consider our prospects for the planets’ atmospheric characterization. 
    more » « less
  4. null (Ed.)
  5. The vast majority of Milky Way stellar halo stars were likely accreted from a small number (<~3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained and predominantly relies on indirect dynamical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be within the stellar halo, a subset of which are associated with the Gaia–Enceladus–Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined here, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia–Enceladus–Sausage stars in our sample of 8+/-3 (stat.)+/-1 (sys.) Gyr. We also determine hierarchical ages using isochrones for the populations of Gaia–Enceladus–Sausage, in situ halo and disk stars, finding a Gaia–Enceladus–Sausage population age of 8.0+2.3-3.2 Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow a distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future 
    more » « less
  6. null (Ed.)